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Abstract

A neuron with binary inputs and a binary output rep-
resents a Boolean function. Our goal is to extract this
Boolean function into a tractable representation that
will facilitate the explanation and formal verification
of a neuron’s behavior. Unfortunately, extracting a neu-
ron’s Boolean function is in general an NP-hard prob-
lem. However, it was recently shown that prime im-
plicants of this Boolean function can be enumerated
efficiently, with only polynomial time delay. Building
on this result, we propose a best-first search algorithm
that is able to incrementally tighten inner and outer
bounds of a neuron’s Boolean function. These bounds
correspond to truncated prime-implicant covers of the
Boolean function. We provide two case studies that
highlight our ability to bound the behavior of a neuron.

Introduction

Rapid advances in artificial intelligence, and its increasing
pervasiveness, has brought with it the need to understand
and explain the behavior of the resulting systems. This need
gave rise to a new sub-field of Al, called eXplainable Ar-
tificial Intelligence (XAI); see, e.g. (Baehrens et al. 2010;
Ribeiro, Singh, and Guestrin 2016; 2018; Lipton 2018). For-
mal approaches to XAl in particular, seek to provide formal
guarantees on the behavior of such systems, e.g., by provid-
ing bounds on the output of a neural network (say, a guar-
antee that a self-driving car does not exceed safe driving
speeds); see, e.g., (Katz et al. 2017; Leofante et al. 2018;
Shih, Choi, and Darwiche 2018b; 2018a; Ignatiev, Naro-
dytska, and Marques-Silva 2019b; Audemard, Koriche, and
Marquis 2020; Cooper and Marques-Silva 2021).
Unfortunately, for a sufficiently powerful notion of expla-
nation, it is NP-hard to explain the behavior of a neural net-
work (Cooper and Marques-Silva 2021). For example, de-
ciding if a neural network ever produces a positive label-
ing is analogous to testing the satisfiability of a Boolean
formula. The situation is worse than this: it is NP-hard to
explain the behavior of an individual neuron. It is NP-hard
to decide if a neuron outputs a 1 more often than a 0. It
is also NP-hard to compile an individual neuron into a more
tractable representation, such as an Ordered Binary Decision
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Diagram (OBDD) (Shih, Choi, and Darwiche 2018b).!

Fortunately, there is recourse to this apparent intractabil-
ity. For example, a neuron (with a step-activation) will ad-
mit a pseudo-polynomial time compilation into an OBDD
if its weights are integers. Further, if the aggregate weight
of such a neuron is bounded, then it can be compiled
into an OBDD in polytime (Chan and Darwiche 2003;
Shi et al. 2020). More recently, (Marques-Silva et al. 2020)
showed that prime implicants (PIs) can be efficiently enu-
merated from a linear classifier. Prime implicants, and the
corresponding PI-explanations (or sufficient explanations)
provide a partial description of the behavior of a classifier
(Shih, Choi, and Darwiche 2018b; Ignatiev, Narodytska, and
Marques-Silva 2019a; 2019b; Darwiche and Hirth 2020). In
the same way that a Boolean function can be decomposed
according to its prime implicants, the behavior of a neuron
can be decomposed according to its PI-explanations.

By enumerating the prime implicants of the Boolean func-
tion of a neuron, we obtain an inner and outer bound on
the behavior of a neuron. In this paper, we formulate this
enumeration problem as a best-first search problem, in order
to obtain the tightest possible bounds. This yields a poly-
time approximation of a neuron’s Boolean function, corre-
sponding to a truncated prime implicant cover. Empirically,
through two case studies, we show how our algorithm is able
to provide near-total coverage of a neuron’s behavior, by
enumerating a relatively small number of prime implicants.

This paper is organized as follows. First, we characterize
the behavior of a neuron in simpler terms, as a threshold test.
We next show how the behavior of a threshold test can be
bounded by prime implicants. Next, we define a search space
over threshold tests, which we explore via best-first search to
tighten inner and outer bounds on the behavior of a threshold
test. Before concluding, we provide two case studies that
highlight our ability to bound the behavior of a neuron.

'An OBDD is a tractable representation of a Boolean func-
tion that supports polynomial time transformations and opera-
tions (Bryant 1986; Meinel and Theobald 1998; Wegener 2000),
which facilitate the explanation and formal verification of a neuron
(Shih, Choi, and Darwiche 2018a; Audemard, Koriche, and Mar-
quis 2020). OBDDs are studied in the field of knowledge compila-
tion, a sub-field of Al that studies in part tractable representations
of Boolean functions, and the trade-offs between their succinctness
and tractability; see, e.g., (Darwiche and Marquis 2002).



On Neurons as Threshold Tests

Consider binary neurons with (1) binary inputs Iy,..., I,
that are O or 1, and (2) a binary output that is O or 1. Further,
assume that the neuron has a step activation o(x) = 1 if
x > 0and o(x) = 0 otherwise. Such a neuron has the form:

J(I, ..., 1) = o (widy +wals + - - wply + D)

where w; is the weight on input /;, and b is a bias. Such a
neuron can be viewed as a function mapping binary inputs
to a binary output, i.e., a Boolean function. We refer to this
as the neuron’s Boolean function.

Some binary classifiers, including neurons with step acti-
vations, can be viewed more generally as a threshold test.

Definition 1. A threshold test f is a function with n inputs
L,..., I, that are 0 or 1, with weights w1, ...,w, and a
threshold T'. The output of a threshold test is 1 iff

w1I1 + w2I2 + ... +wnIn Z T

and we say that the test passes. Otherwise, the output is 0
and we say that the test fails.

Note that a negated threshold —7' is a bias b in a neuron.

Observation 1. The output of a neuron is 1 iff the corre-
sponding threshold test passes.

Consider, as a running example, the following threshold test:
3-Li+2-Ip—4-1I3>1. @)

We can enumerate all possible inputs and record the output,
as we would a truth table:

L L I3 f L I I3 f
0 0 010 T 0 01
0 0 110 1 0 1]0.
0 1 0|1 1 1 01
0 1 110 11 1|1

We say that a threshold test f always passes iff the left-hand
side is always greater than or equal to the threshold, no mat-
ter how we set the inputs. Similarly, we say that a threshold
test f always fails iff the left-hand side is always less than
the threshold. We call a threshold test reduced or trivial if it
either always passes or it always fails.

In our example, if we set input I; to 0 and input /5 to O,
then the resulting threshold test has been reduced and always
fails, no matter how we set input I3:

—4-I3> 1. @

Suppose instead that we set input I; to 1 and input I5 to 1.
After subtracting 5 from both sides, the resulting threshold
test has been reduced and always passes:

—4. I3 > 4. 3)

Observe that the left-hand side of a threshold test is mini-
mized by setting all inputs with positive weight to 0 and all
inputs with negative weight to 1. Similarly, the left-hand side
is maximized by setting all inputs with positive weight to 1
and all inputs with negative weight to 0. In our example, the
left-hand side has a minimum of -4 and a maximum of 5.

Definition 2. Suppose we have a threshold test f, where we
let W denote the set of positive weights and we let W~
denote the set of negative weights. The threshold test | has
a lower bound L and upper bound U where:

L=) cw-w U= ew+w.
The range of a threshold test is thus [L, U] where:
L <w il +welo+ - +w,Il, <U.
for all settings of I, . . ., I, to 0/1 values.

This leads to a simple condition for testing whether a
threshold-test always passes, or always fails.

Proposition 1. Let [ be a threshold test with threshold T
and range [L, U].

* A threshold test f always passes iff T < L.

* A threshold test f always fails iff U < T.

The original threshold test of Equation 1 has a range [—4, 5]
and a threshold 1 and is not yet reduced. The threshold test
of Equation 2 has a range [—4, 0] and a threshold 1 and thus
always fails. The threshold test of Equation 3 has a range
[—4, 0] and a threshold —4 and thus always passes.

Bounding the Behavior of a Threshold Test

The function f representing a threshold test outputs a 1 if
the threshold test passes, and outputs a 0 otherwise. Con-
sider a partial setting of the inputs « that reduces a threshold
test into one that always passes. This « is a more concise
description of the behavior of the threshold test, in that it
summarizes many input settings that cause the threshold test
to pass (exponentially many, in the number of unset inputs).

In logical terms, a (partial) setting of inputs is a conjunc-
tion of literals, which we call a ferm. A term « is also called
an implicant of a Boolean function f if « entails f, i.e., each
extension of a partial setting « to a total setting, over all in-
puts, results in an assignment satisfying f. We call « a prime
implicant if no sub-term of « is also an implicant. A prime
cover is a decomposition of a function f into prime impli-
cants (Coudert et al. 1993). The prime cover of a function
f may not be unique, and we generally prefer irredundant
covers that contain fewer implicants. Suppose that a prime
cover of f has m implicants ;:

f=a1Vas V- Va,

Note that each implicant «; summarizes a sub-space of the
inputs that satisfy f.> These implicants in aggregate provide

Prime implicants have been applied towards explaining the be-
havior of machine learning classifiers previously, where they are re-
ferred to as PI-explanations, or sufficient explanations (Shih, Choi,
and Darwiche 2018b; Ignatiev, Narodytska, and Marques-Silva
2019a; 2019b; Darwiche and Hirth 2020); probabilistic variations
have also been proposed, such as Anchors (Ribeiro, Singh, and
Guestrin 2018; Ignatiev, Narodytska, and Marques-Silva 2019c).
For example, a Pl-explanation for why an image classifier labels
an image a dog, would find a (small) sub-image that is sufficient
for this decision, i.e., a (small) subset of pixels that need to be set
before the classifier commits to its label. These types of explana-
tions are sometimes referred to as a local explanation of a classi-
fier’s behavior (around a specific input). Prime implicants, viewed
as a decomposition of a classifier’s Boolean function are sometimes
referred to as a global explanation of a classifier’s behavior.
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Figure 1: Decision tree over threshold tests.

a precise description of the behavior of f. Suppose that we
have a subset A of a prime cover of f and a subset B of a
prime cover of = f. Such subsets (or truncations) of a prime
cover yield inner and outer bounds on the behavior of f:

VaeAC" F f FE /\563_‘5~ “)

Hence, if we can enumerate the prime implicants of a thresh-
old test’s Boolean function, we can tighten inner and outer
bounds on its behavior. (Marques-Silva et al. 2020) showed
that prime implicants can be efficiently enumerated for a
broad class of linear classifiers, including threshold tests.

Theorem 1. The prime implicants of a linear classifier’s
Boolean function can be enumerated with polynomial delay.

Next, we provide a simplified perspective on this result,
based on best-first search, where we enumerate the shortest
(most informative) prime implicants first.

Enumerating the Space of Threshold Tests

If we fix the input of a threshold test to a value, we obtain
a simpler threshold test with one fewer input. This induces
a space of threshold tests based on setting inputs to values.
Figure 1 depicts an example search tree, where each node
represents a threshold test, and where each directed edge
f — g represents the setting of an input in threshold test f
to obtain threshold test g. For example, we have the follow-
ing threshold test at the root of this tree:

—4-51—2-Ib+3-I3+5-1, > 3.
If we set input I to 0, we obtain the simpler threshold test:
—4-I1-2-Ib+3-1I3>3

by following the dashed edge. If we instead set input I, to
1, we obtain the threshold test by following the solid edge:

40 =2 I +3- I3 > —2

after subtracting 5 from both sides. We can continue to ex-
pand the tree until we have set all inputs to values, and
we have a comparison between two constants, which either

passes or fails. For example, if we set all inputs to one (by
following all of the solid lines from the root), we obtain the
comparison —2 > —1 which fails.

By expanding all such paths, we obtain a decision tree
representing the threshold test’s Boolean function. Note that
once a threshold test reduces to a trivial one, we need not
expand its sub-tree, as all of its leaves will have the same
status (either all passing, or all failing). For example, after
setting I, to 1, and I; to O in the root threshold test we have:

—2. L +3-I3> -2

which has a range [—2, 3] and a threshold —2 and is thus
always passing. Thus, we can prune our decision tree by not
expanding sub-trees rooted at trivial threshold tests.

Consider the paths from the root to each leaf of a threshold
test’s decision tree (pruned or not). Each path is a conjunc-
tion of literals (a term) composed of the input settings on the
path. The decision tree’s Boolean function is the disjunction
of the path terms to the always-passing leaves. A shallower
decision tree has fewer leaves with shorter path terms, and
hence a shallower decision tree represents a more compact
representation of a threshold test’s Boolean function. Our
next goal is to find a shallow decision tree. Subsequently,
we will also show how the decision tree represents a prime
cover of the threshold test’s Boolean function.

Suppose, more formally, that we have a threshold test f
with inputs I1,..., I, weights wy,...,w,, a threshold T’
and range [L, U]. When we fix the value of an input I that
has a corresponding weight w, we obtain a simpler threshold
test that has (1) one fewer input, (2) an updated threshold,
and (3) an updated range. We have four cases, based on the
sign of the weight and the value that we set the input to:

e w > 0and I =0: range [L, U — w] and threshold T’
* w > 0and I =1: range [L,U — w] and threshold 7" — w
* w < 0and I=0: range [L — w, U] and threshold T’
* w < 0and I =1: range [L — w, U] and threshold 7" — w
We quantify how close we are to reducing a threshold test.

Definition 3. Say we have a threshold test f with threshold

T and range [L,U].

e If the threshold test is not always passing, then L < T
and the gap before it becomes always passing is T — L.

o [fthe threshold test is not always failing, then T' < U and
the gap before it becomes always failing is U — T.

A setting of an input is called reducing if it reduces the gap.

To close the gap of a threshold test towards always passing,
we can set an input with a negative weight —w to 0 to raise
the lower bound L, or we can set an input with a positive
weight w to 1 to lower the threshold T'. To close the gap of
a threshold test towards always failing, we can set an input
with a positive weight w to 0 to lower the upper bound U, or
we can set an input with a negative weight —w to 1 to raise
the threshold 7. In all cases, the gap decreases by w. Hence,
to reduce a threshold test to a trivial one, it suffices to set
inputs to values that close the corresponding gap. To close
this gap quickly, by setting the fewest inputs, it follows from
(Marques-Silva et al. 2020) that a greedy approach suffices.



That is, we pick the smallest set of inputs whose aggregate
(absolute) weight meets or exceeds the gap.

Proposition 2. Suppose we have a threshold test f that is
not yet reduced, and let G be the gap until it becomes always
passing (or always failing ). To reduce f to a trivial threshold
test, by setting the fewest number of inputs, iteratively pick
the input I; with largest absolute weight |w;| and set the
input to its reducing value, until the gap is closed.

Consider the test at the root of the decision tree in Figure 1:
—4-I1 —2-Ib4+3-Is+5-1, > 3.

which has range [—6, 8] and threshold 3. The gap until it
always passes is T — L = 3 — (—6) = 9, and the fastest
way to reduce it is to set I4 to 1 and I; to 0. The gap until it
always fails is U — T = 8 — 3 = 5, and the fastest way to
reduce it is to set I, to 0 and /; to 1 (note that to reduce it
to always failing, we must strictly clear the gap, as the test
passes if the left-hand side is still equal to the threshold).

Search in the Decision Tree

As discussed, a shallower decision tree is a more compact
representation of a threshold test’s Boolean function. Once
we have fixed the decision tree, we also want to enumerate
its leaves from shallowest to deepest, as shallower leaves
have shorter paths that are more informative.

We propose to answer both points by formulating the
problem as a best-first search (such as A* search) in the deci-
sion tree. Initially, we have a priority queue containing just
the initial threshold test, i.e., the root of the decision tree.
The goal states in our search are the leaf nodes that corre-
spond to always-passing threshold tests. The priority queue
ranks threshold tests based on the number of inputs that need
to be set to reduce it to a trivial one; each threshold test can
be scored in polytime using Proposition 2. Each iteration, we
pop the threshold test needing the fewest inputs set to reduce
it. We find the unset input I with largest absolute weight |w/,
as in Proposition 2. We produce two simpler threshold tests
found by setting input [ to 0 and 1, which we push into the
priority queue, and go on to the next iteration.

The first goal node that we find will be the shallowest leaf
node in the decision tree, which corresponds to the short-
est prime implicant of the decision tree’s Boolean function
(Marques-Silva et al. 2020). We can continue the search to
enumerate the next shallowest leaf node, and the next shal-
lowest leaf node, and so on until we enumerate all leaf nodes
(and we have covered the entire function), or until we con-
sume the computational resources available to us (and we
have only a bound on the function).

A Decision Tree is a Prime Cover

Let f denote a decision tree’s Boolean function, which is
found by disjoining all paths to its always-passing leaves,
where — f is the function found by disjoining all paths to the
always-failing leaves. If the decision tree is not pruned, then
this representation simply enumerates all models of f.

If the decision tree has been pruned, consider a path « to a
leaf representing an always-passing threshold test. This path
« is an implicant of the function f: any completion of « to
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Figure 2: Bounding the behavior of a 0 versus 1 neuron.

all inputs results in a passing threshold test, and thus corre-
sponds to a satisfying assignment of f. Hence, a pruned de-
cision tree represents a decomposition of the Boolean func-
tion f into implicants. For each path a, we can always obtain
from it a prime implicant, using the following Lemma.

Lemma 1. Say we have a threshold test f and a partial
assignment ~y of its inputs, where input I is non-reducing. If
~ is an implicant of f, then ~ \ I is also an implicant of f.

Corollary 1. If~ is a path to an always-passing leaf found
by best-first search, and « is the result of unsetting all non-
reducing inputs in v, then « is a prime implicant of the de-
cision tree’s Boolean function.

See Appendix for proofs. From Lemma 1 and Corollary 1, a
pruned decision tree represents a prime cover of f.

Theorem 2. Say we have a threshold test f, and one of its
pruned decision trees found by best-first search. Suppose we
take all paths to always-passing leaves, and we unset all in-
puts that are non-reducing. The resulting set of terms repre-
sents a prime cover of the threshold test’s Boolean function.

By enumerating always-passing leaves, we enumerate prime
implicants of a threshold test’s Boolean function f. Simi-
larly, by enumerating always-failing leaves, we enumerate
the prime implicants of —f. Thus, we can produce tighten-
ing inner and outer bounds on f, as in Equation 4.

Case Study: Handwritten Digits

We next show how to bound the behavior of a neuron using
the MNIST dataset of handwritten digits. MNIST consists of
55,000 grayscale images, which we binarized to black-and-
white. Each image has 28 x 28 = 784 pixels, and is labeled
with a digit from 0 to 9. We consider one-vs.-one classifica-
tion over all (') = 45 pairs of digits (i, j). The resulting bi-
nary classifier for pair (4, j) corresponds to a Boolean func-
tion with 784 binary inputs and one binary output that is true
or false if the digit is ¢ or 5. We used the scikit-learn
to train a binary neuron with a step activation.’

Consider Figure 2, which illustrates our ability to bound
the behavior of a neuron, using the best-first search that we

3We first trained a logistic regression model, with L; penalty,
inverse regularization strength C' = 0.002, and the 1iblinear
solver, and then replaced the sigmoid with a step activation.



proposed. To visualize the inner and outer bounds of a neu-
ron’s Boolean function f, as in Equation 4, we plot lower
and upper bounds on the model count of f, i.e., the number
of its satisfying assignments. That is, the model count of the
inner bound is a lower bound on the model count of f, and
the model count of the outer bound is an upper bound on the
model count.* As each implicant o that we enumerate yields
a tighter inner and outer bound on f, they also yield a tighter
lower and upper bound on the model count of f.

In Figure 2, where we considered O-versus-1 digit clas-
sification, blue lines represent lower bounds and red lines
represent upper bounds, which meet at the horizontal pur-
ple line representing the neuron’s model count. The model
count represents the number of input settings where the neu-
ron outputs a 1 label, which is roughly 4.57 x 10%3® out of
2784~ 1.01 x 10236 possible input settings. Solid red & blue
lines represent the best-first search (BFS) that we proposed.
The dash-dotted lines represent a greedy depth-first search
(DES), where we set inputs with highest weight first, and
to their reducing value first; greedy DFS represents the enu-
meration algorithm proposed by (Marques-Silva et al. 2020).
In BFS and greedy DFS, one search was performed to find
the lower bound (the always-passing leaves) and a separate
search was performed to find the upper bound (the always-
failing leaves), as the reducing values for upper and lower
bounds are different. The dotted lines represent a naive DFS
where inputs were set in their natural order.

First, we observe that our BFS clearly obtains tighter
lower and upper bounds compared to the alternatives. Naive
DFS generates very loose bounds and nearly the entire de-
cision tree needs to be enumerated before one obtains tight
bounds. Greedy DFS performs much better than naive DFS,
but not as well as our BFS. While greedy DFS explores more
promising branches of the search tree first, once it goes down
a branch, it must finish exploring it, unlike BFS which can
explore more promising branches elsewhere. On the other
hand, the space complexity of BFS is linear in the size of the
search frontier, which may become exponentially large.

For each type of search, we also plotted using black verti-
cal lines the point where each search enumerated 95% of the
input space (or a 5% gap between the bounds), relative to the
2784 possible input settings. To reach this point, BFS enu-
merated only 65,176 implicants compared to 176,219 impli-
cants enumerated by greedy DFS. Both searches enumerated
220,640 total implicants for the lower bound and 229,964 to-
tal implicants for the upper bound. In contrast, naive DFS
had to enumerate 873,228 implicants out of 839,075 and
933,899 total implicants for its lower and upper bounds. For
digit pair (2,8), greedy DFS enumerated 8.12 times more
implicants than our BFS, and naive DFS enumerated 418.52

“Note that, if a Boolean function f has n inputs and an impli-
cant o of f has k literals, then « represents 2" ~* models of f: there
are n. — k missing inputs in ¢, and thus 2" ~* ways of completing
a. By Theorem 2, we obtain a prime cover of a neuron’s Boolean
function by aggregating the reduced paths to the decision tree’s
leaves. However, the implicants of a prime cover are not mutually-
exclusive (and may double-count models), whereas the unreduced
paths are mutually-exclusive. Hence, to bound the model count, we
use unreduced path costs in our best-first search.

ale
g

Figure 3: Digits classified as a 4 (top row), and classified as
an 8 (bottom row), with their PI-explanations.

times more than our BFS. On average, across all 45 pairs of
digits, greedy DFS enumerated 2.74 times more implicants,
and naive DFS enumerated 51.11 times more.

Finally, we highlight how prime implicants can be used to
gain insights on the behavior of a classifier. Figure 3 high-
lights the results of our 4-vs.-8 digit classifier, which labeled
the top two images as a 4, and the bottom two images as an
8. Consider the top-left image of a 4, where we have high-
lighted six pixels: three white pixels on the left and right
of the image, and three black pixels near the top of the im-
age. These six pixels are a prime-implicant (PI) explanation
for why the classifier labeled this image as a 4 (Shih, Choi,
and Darwiche 2018b; Ignatiev, Narodytska, and Marques-
Silva 2019a; 2019b; Darwiche and Hirth 2020). In particu-
lar, these six pixels are sufficient for the classifier to label
the image as a 4; none of the other pixels matter once these
six pixels are fixed. Consider the bottom-left image of an 8§,
where the PI-explanation is composed of two black pixels
on the left and right and one white pixel near the top. These
two explanations suggest together that the classifier is using
a simple pattern to label an image: looking at pixels on the
left and right suggests that the classifier is trying to detect
the presence of a horizontal stroke in a 4, or its absence in
an 8. Similarly, looking at pixels on the top suggests that
the classifier is trying to detect a closed loop for an 8, or an
open one for a 4. This strategy was enough for the classi-
fier to achieve a training set accuracy of 92.88%, but we are
clearly not learning a robust representation of 4’s and 8’s.
The right column of Figure 3 shows images of an 8 and 4
that evaded this simple pattern, and were thus misclassified.

Case Study: Congressional Voting

Next, we present a case study using the 1984 Congressional
voting records dataset, from the UCI ML Repository (Bache
and Lichman 2013). This dataset consists of 435 examples,
one for each member of the U.S. House of Representatives,
with 16 attributes, corresponding to 16 key votes. Each in-
stance is labeled as Republican (R) or Democrat (D), and
hence the classification task is to predict a member’s party
given their key votes. Each key vote can be a y for a yea
vote, an n for a nay vote, and a ? if the vote was missing.
After imputating missing votes, based on the majority vote
of the member’s party, the resulting dataset is binary. A 1
output (passing threshold test) corresponds to a Democrat
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Figure 4: Bounding the behavior of a Congress vote neuron.

label, and a O output (failing threshold test) corresponds to a
Republican label. We used the scikit—-learn library to
train a binary neuron,’ with a training accuracy of 97.70%.

Figure 4 highlights the ability of our enumeration algo-
rithm to bound the behavior of the neuron that we trained
from this dataset. To cover the total input space, our BFS
enumerated 1,243 implicants for the lower bound (blue
solid line) and 1,193 implicants for the upper bound (red
solid line). In order to cover 95% of the input space (high-
lighted with black vertical bars), our BFS (solid lines)
needed to enumerate only 406 implicants, whereas greedy
DFS (dashed-dotted lines) needed to enumerate over twice
as many, using 893 implicants. Naive DFS (dotted lines)
needed to enumerate 3,384 implicants.

Table 1 highlights three of the shortest PI-explanations for
Republicans (R) and Democrats (D). We see that, for the
neuron that we trained, as few as 5 (of the right) votes are
needed to label a Congressmember as a Republican, and as
few as 3 are needed to label a Congressmember as a Demo-
crat. A Pl-explanation’s votes are sufficient to determine the
behavior of the classifier: the values of the remaining votes
would not change the classifier’s decision (i.e., label).

Table 1 also highlights the vote counts by party for each
key vote. From the PI-explanations, Bills 3 and 4 appear to
be important in determining whether one is a Republican or
a Democrat. From the vote counts, Bill 3 was heavily fa-
vored by Democrats and heavily opposed by Republicans,
and vice-versa for Bill 4.5 These two bills were not sufficient
to commit to a label; in addition, some combination of votes
on Bills 9, 10, 11 and 12 were also used by the classifier.’

Conclusion

We proposed an approach that incrementally tightens inner
and outer bounds on the behavior of a binary neuron. We

>We trained a logistic regression model with default parameters.

SBill 3 proposed to raise taxes, lower military spending, and
raise domestic spending. Bill 4 proposed a one-year freeze on
physicians’ fees, in an effort to help curb rising healthcare costs.

"Bill 9 proposed to regulate funding on intercontinental mis-
siles, Bill 10 proposed to restrict the hiring of unauthorized work-
ers, Bill 11 proposed to decrease funding for synthetic fuels, and
Bill 12 proposed an income tax deduction for educational expenses.

Table 1: 1984 Congressional Voting Records

bills PlI-explanations vote counts

Ri1 Re R3||D1 D2 D3||Ry Rn Re||Dy Dy D-
1 infants == -l - -] - | 31134] 3){156[1021 9
2 water-proj -l -1 -1 -1-1-| 75/ 73|20]{120]{119| 28
3budget-res ||n|n|n| v |y |y | 22[142| 4{]231] 29| 7
4physicians ||y |y |y | n|n|n|163] 2| 3| 14/245 8
Sel-salvador || - | - | - || - | - | - [[157] 8] 3|| 55/200| 12
6 schools -l -] -] - ||1149] 17] 2{|123[135] 9
7 anti-satellite|| - | - | - || - | - | - || 39/123| 6[|200] 59| 8
8 contra-aid == -l - -] - || 24({133] 11)|218] 45| 4
9mx-missile || - [n|n|l -] -] - | 19/146| 3|/188| 60| 19
10 immigration|| v | v | - || n | - | - || 92| 73| 3|[124]{139| 4
11 synfuels nin|n|l -|-|y]| 21138 9(|129|126] 12
12 education vi-|v|l - |n|- [[135] 20/13|| 36/213|18
13 superfund === -] -] - 1136 22|10} 73]179| 15
14 crime -0 - -] - |1158] 3] 7] 90[167] 10
15 duty-free == - - -] - || 14{142] 12)[160] 91| 16
16 south-africa|| - | - | - || - | - | - || 96| 50|22(|173| 12|82

build on a recently proposed approach for efficiently enu-
merating prime implicants from a linear classifier. We sim-
plify the problem of enumerating prime implicants, and for-
mulate it as a best-first search in a space over threshold tests.
We show that the inner and outer bounds correspond to a
truncated prime implicant cover of a neuron’s Boolean func-
tion. Through two case studies, we showed how our best-first
search approach can quickly provide near-total coverage on
the behavior of a neuron, compared to other approaches.
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Proofs

Proof of Lemma 1. Say we have threshold test wyI; +- - - +
wyp I, > T, its Boolean function f, and an implicant y of f.
Suppose input I, was a non-reducing setting in ~y. Since 7y
is an implicant, setting y results in an always-true threshold
test where T, < [L.,, U,]. We want to show that x =~ \ I}
remains an implicant, and the threshold test is still always-
true. Consider two cases. (1) If wy > 0 then setting Ij to
0 is non-reducing. If we unset I, then s induces another
test with threshold T); = T, and range L,, = L, and U,, =
U, —wy.Since T, < L, <U,,wehave T,, < L, < U,,
so the threshold test is still trivial. (2) If wy < 0 then setting
Iy, to 1 is non-reducing. If we unset Iy, then « has a test with
threshold T), = T’, —wy, andrange L,, = L, —wy and U, =
U,.Since T, < L, < U,,wehave T,, < L, < U,. O

Proof of Corollary 1. Since ~y reaches an always-passing
leaf, v is an implicant. By Lemma 1, we can unset the non-
reducing inputs in 7y to get another implicant x. We cannot
unset a reducing input from «. If we could, we could unset
instead the input used to reach the leaf (since it closes the
gap less), so the parent of the leaf should have been always-
passing. Hence, x must be prime. O
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